Strong convergence results for arrays of rowwise pairwise NQD random variables
نویسندگان
چکیده
منابع مشابه
On the Strong Convergence and Complete Convergence for Pairwise NQD Random Variables
and Applied Analysis 3 2. Preliminaries In this section, wewill present some important lemmaswhich will be used to prove the main results of the paper. The first three lemmas come from Sung [1]. Lemma 11 (cf.[1]). Let {a n , n ≥ 1} be a sequence of positive constants with a n /n ↑. Then the following properties hold. (i) {a n , n ≥ 1} is a strictly increasing sequence with an a n ↑ ∞. (ii) ∑∞ n...
متن کاملOn complete convergence for arrays of rowwise dependent random variables
This paper establishes two results for complete convergence in the law of large numbers for arrays under %-mixing and ~ %-mixing association in rows. They extend several known results. AMS classi cation: 60F15
متن کاملComplete convergence and complete moment convergence for arrays of rowwise ANA random variables
In this article, we investigate complete convergence and complete moment convergence for weighted sums of arrays of rowwise asymptotically negatively associated (ANA) random variables. The results obtained not only generalize the corresponding ones of Sung (Stat. Pap. 52:447-454, 2011), Zhou et al. (J. Inequal. Appl. 2011:157816, 2011), and Sung (Stat. Pap. 54:773-781, 2013) to the case of ANA ...
متن کاملComplete Moment Convergence and Mean Convergence for Arrays of Rowwise Extended Negatively Dependent Random Variables
The authors first present a Rosenthal inequality for sequence of extended negatively dependent (END) random variables. By means of the Rosenthal inequality, the authors obtain some complete moment convergence and mean convergence results for arrays of rowwise END random variables. The results in this paper extend and improve the corresponding theorems by Hu and Taylor (1997).
متن کاملA note on the complete convergence for sequences of pairwise NQD random variables
* Correspondence: [email protected] School of Mathematics Science, University of Electronic Science and Technology of China, Chengdu 610054, PR China Full list of author information is available at the end of the article Abstract In this paper, complete convergence and strong law of large numbers for sequences of pairwise negatively quadrant dependent (NQD) random variables with nonidenti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2013
ISSN: 1029-242X
DOI: 10.1186/1029-242x-2013-102